www.Liveintheearth.blogspot.com

get hot news about the medical world on this blog

Minggu, 08 Juli 2007

Tyrannosaurus Rex (T-REX)

Tyrannosaurus is a genus of theropod dinosaur. The species Tyrannosaurus rex, commonly abbreviated to T. rex, is one of the dinosaurs most often featured in popular culture around the world. It hails from what is now western North America. Some scientists consider Tarbosaurus bataar from Asia to represent a second species of Tyrannosaurus, while others maintain Tarbosaurus as a separate genus.
Like other tyrannosaurids, Tyrannosaurus was a bipedal carnivore with a massive skull balanced by a long, heavy tail. Relative to the large and powerful hindlimbs, Tyrannosaurus forelimbs were small and retained only two digits. Although other theropods rivaled or exceeded T. rex in size, it was the largest known tyrannosaurid and one of the largest known land predators, measuring over 13 metres (43 feet) in length and up to 6.8 metric tons (7.5 short tons) in weight.
Fossils of T. rex have been found in North American rock formations dating to the last three million years of the Cretaceous Period at the end of the Maastrichtian stage, approximately 68.5 to 65.5 million years ago; it was among the last dinosaurs to exist prior to the Cretaceous-Tertiary extinction event. More than 30 specimens of T. rex have been identified, some of which are nearly complete skeletons. Some researchers claim to have discovered soft tissue as well. The abundance of fossil material has allowed significant research into many aspects of its biology, including life history and biomechanics. The feeding habits, physiology and potential speed of T. rex are a few of the topics which remain controversial.


Description
Tyrannosaurus rex was one of the largest land carnivores of all time, measuring 12 to 13 meters (40 to 43.3 feet) long, and 4.5-5 m (14-16.6 ft) tall, when fully-grown. Mass estimates have varied widely over the years, from more than 7,200 kilograms (8 tons), to less than 4,500 kg (5 tons), with most modern estimates ranging between 5,400 and 6,800 kg (between 6 and 7.5 tons).The largest known T. rex skulls measure up to 1.5 m (5 ft) in length. Compared to other theropods, the skull was heavily modified. The skull was extremely wide posteriorly, with a narrow snout, allowing some degree of binocular vision. Some of the bones, such as the nasals, were fused, preventing movement between them. Large fenestrae (openings) in the skull reduced weight and provided areas for muscle attachment. The bones themselves were massive, as were the serrated teeth which, rather than being bladelike, were oval in cross-section. Like other tyrannosaurids, T. rex displayed marked heterodonty, with the premaxillary teeth at the front of the upper jaw closely-packed and D-shaped in cross-section. Large bite marks found on bones of other dinosaurs indicate that these teeth could penetrate solid bone. T. rex had the greatest bite force of any dinosaur and one of the strongest bite forces of any animal. Worn or broken teeth are often found, but unlike those of mammals, tyrannosaurid teeth were continually replaced throughout the life of the animal.The neck of T. rex formed a natural S-shaped curve like that of other theropods, but was short and muscular to support the massive head. The two-fingered forelimbs were very small relative to the size of the body, but heavily built. In contrast, the hindlimbs were among the longest in proportion to body size of any theropod. The tail was heavy and long, sometimes containing over forty vertebrae, in order to balance the massive head and torso. To compensate for the immense bulk of the animal, many bones throughout the skeleton were hollow. This reduced the weight of the skeleton while maintaining much of the strength of the bones.
Classification
Tyrannosaurus is the type genus of the superfamily Tyrannosauroidea, the family Tyrannosauridae, and the subfamily Tyrannosaurinae. Other members of the tyrannosaurine subfamily include the North American Daspletosaurus and the Asian Tarbosaurus, both of which have occasionally been synonymized with Tyrannosaurus. Tyrannosaurids were once commonly thought to be descendants of earlier large theropods such as megalosaurs and carnosaurs, although more recently they were reclassified with the generally smaller coelurosaurs.
In 1955, Soviet paleontologist Evgeny Maleev named a new species, Tyrannosaurus bataar, from Mongolia. By 1965, this species had been renamed Tarbosaurus bataar. Despite the renaming, many phylogenetic analyses have found Tarbosaurus bataar to be the sister taxon of Tyrannosaurus rex, and it has often been considered an Asian species of Tyrannosaurus. A recent redescription of the skull of Tarbosaurus bataar has shown that it was much narrower than that of Tyrannosaurus rex and that during a bite, the distribution of stress in the skull would have been very different, closer to that of Alioramus, another Asian tyrannosaur. A related cladistic analysis found that Alioramus, not Tyrannosaurus, was the sister taxon of Tarbosaurus, which, if true, would suggest that Tarbosaurus and Tyrannosaurus should remain separate.
Other tyrannosaurid fossils found in the same formations as T. rex were originally classified as separate taxa, including Aublysodon and Albertosaurus megagracilis, the latter being named Dinotyrannus megagracilis in 1995. However, these fossils are now universally considered to belong to juvenile T. rex. A small but nearly complete skull from Montana, 60 cm (2 ft) long, may be an exception. This skull was originally classified as a species of Gorgosaurus (G. lancensis) by Charles W. Gilmore in 1946, but was later referred to a new genus, Nanotyrannus. Opinions remain divided on the validity of N. lancensis. Many paleontologists consider the skull to belong to a juvenile T. rex. There are minor differences between the two species, including the higher number of teeth in N. lancensis, which lead some scientists to recommend keeping the two genera separate until further research or discoveries clarify the situation.

Manospondylus controversy
The first fossil specimen which can be attributed to Tyrannosaurus rex consists of two partial vertebrae (one of which has been lost) found by Edward Drinker Cope in 1892 and described as Manospondylus gigas. Osborn recognized the similarity between M. gigas and T. rex as early as 1917 but, due to the fragmentary nature of the Manospondylus vertebrae, he could not synonymize them conclusively.
Controversy erupted in June 2000 after the Black Hills Institute located the type locality of M. gigas in South Dakota and unearthed more tyrannosaur bones there. These were judged to represent further remains of the same individual, and to be identical to those of T. rex. According to the rules of the International Code of Zoological Nomenclature (ICZN), the system that governs the scientific naming of animals, Manospondylus gigas should therefore have priority over Tyrannosaurus rex, because it was named first. However, the Fourth Edition of the ICZN, which took effect on January 1, 2000, states that "the prevailing usage must be maintained" when "the senior synonym or homonym has not been used as a valid name after 1899" and "the junior synonym or homonym has been used for a particular taxon, as its presumed valid name, in at least 25 works, published by at least 10 authors in the immediately preceding 50 years..." Tyrannosaurus rex easily qualifies as the valid name under these conditions and would most likely be considered a nomen protectum ("protected name") under the ICZN if it was ever challenged, which it has not yet been. Manospondylus gigas would then be deemed a nomen oblitum ("forgotten name").
Life history
The identification of several specimens as juvenile Tyrannosaurus rex has allowed scientists to document ontogenetic changes in the species, estimate the lifespan, and determine how quickly the animals would have grown. The smallest known individual (LACM 28471, the "Jordan theropod") is estimated to have weighed only 29.9 kg (66 lb), while the largest, such as FMNH PR2081 ("Sue") most likely weighed over 5400 kg (6 short tons). Histologic analysis of T. rex bones showed LACM 28471 had aged only 2 years when it died, while "Sue" was 28 years old, an age which may have been close to the maximum for the species.
Histology has also allowed the age of other specimens to be determined. Growth curves can be developed when the ages of different specimens are plotted on a graph along with their mass. A T. rex growth curve is S-shaped, with juveniles remaining under 1800 kg (2 short tons) until approximately 14 years of age, when body size began to increase dramatically. During this rapid growth phase, a young T. rex would gain an average of 600 kg (1600 lb) a year for the next four years. At 18 years of age, the curve plateaus again, indicating that growth slowed dramatically. For example, only 600 kg (1,300 lb) separated the 28-year-old "Sue" from a 22-year-old Canadian specimen (RTMP 81.12.1). Another recent histological study performed by different workers corroborates these results, finding that rapid growth began to slow at around 16 years of age. This sudden change growth rate may indicate physical maturity, a hypothesis which is supported by the discovery of medullary tissue in the femur of a 16 to 20-year-old T. rex from Montana (MOR 1125, also known as "B-rex"). Medullary tissue is found only in female birds during ovulation, indicating that "B-rex" was of reproductive age. Other tyrannosaurids exhibit extremely similar growth curves, although with lower growth rates corresponding to their lower adult sizes.
Over half of the known T. rex specimens appear to have died within six years of reaching sexual maturity, a pattern which is also seen in other tyrannosaurs and in some large, long-lived birds and mammals today. These species are characterized by high infant mortality rates, followed by relatively low mortality among juveniles. Mortality increases again following sexual maturity, partly due to the stresses of reproduction. One study suggests that the rarity of juvenile T. rex fossils is due in part to low juvenile mortality rates; the animals were not dying in large numbers at these ages, and so were not often fossilized. However, this rarity may also be due to the incompleteness of the fossil record or to the bias of fossil collectors towards larger, more spectacular specimens.


..read more...

Mammoth


A mammoth is any of a number of an extinct genus of proboscidean (of which the elephant remains), often with long curved tusks and, in northern species, a covering of long hair. They lived from the Pliocene epoch from 4.8 million years ago to around 4,000 years ago. The word mammoth comes from the Russian мамонт mamont, probably in turn from the Khanty

Evolutionary history
Mammoth remains have been found in Europe, Africa, Asia, and North America. They are believed to have originally evolved in North Africa about 4.8 million years ago, during the Pliocene, where bones of Mammuthus africanavus have been found in Chad, Libya, Morocco and Tunisia. Mammuthus subplanifrons, found in South Africa and Kenya, is also believed to be one of the oldest species (about 4 million years ago).
Despite their African ancestry, they are in fact more closely related to the modern Asian Elephant than either of the two African elephants (as both Mammuthus and Elephas also originated in Africa). The common ancestor of both mammoths and Asian elephants split from the line of African elephants about 6 - 7.3 million years ago. The Asian elephants and mammoths diverged about half a million years later (5.5 - 6.3 million years ago).
In due course the African mammoth migrated north to Europe and gave rise to a new species, the southern mammoth (Mammuthus meridionalis). This eventually spread across Europe and Asia and crossed the now-submerged Bering Land Bridge into North America.
Around 700,000 years ago, the warm climate of the time deteriorated markedly and the savannah plains of Europe, Asia and North America gave way to colder and less fertile steppes. The southern mammoth consequently declined, being replaced across most of its territory by the cold-adapted steppe mammoth (Mammuthus trogontherii). This in turn gave rise to the woolly mammoth, Mammuthus primigenius) around 300,000 years ago. Woolly mammoths were better able to cope with the extreme cold of the Ice Ages.
The woollies were a spectacularly successful species; they ranged from Spain to North America and are thought to have existed in huge numbers. The Russian researcher Sergei Zimov estimates that during the last Ice Age, parts of Siberia may have had an average population density of sixty animals per hundred square kilometres - equivalent to African elephants today.
Extinction
Most mammoths died out at the end of the last Ice Age. A definitive explanation for their mass extinction is yet to be agreed upon. A small population survived on St. Paul Island, Alaska, up until 6000 BC , and the small mammoths of Wrangel Island became extinct only around 1700 to 1500 BC.
Whether the general mammoth population died out for climatic reasons or due to overhunting by humans is controversial. Another theory suggests that mammoths may have fallen victim to an infectious disease. A combination of climate change and hunting by humans is probably the most likely explanation for their extinction.
New data derived from studies done on living elephants and reported by the American Institute of Biological Sciences (BioScience, April 2006, Vol. 56 No. 4, pp. 292-298) suggests that though human hunting may not have been the primary cause toward the mammoth's final extinction, human hunting was likely a strong contributing factor. Homo erectus is known to have consumed mammoth meat as early as 1.8 million years ago (BioScience, April 2006, Vol. 56 No. 4, p. 295).
However, the American Institute of Biological Sciences also notes that bones of dead elephants, left on the ground and subsequently trampled by other elephants, tend to bear marks resembling butchery marks, which have previously been misinterpreted as such by archaeologists.
The survival of the dwarf mammoths on Russia's Wrangel Island was due to the fact that the island was very remote, and uninhabited in the early Holocene period. The actual island was not discovered by modern civilization until the 1820s by American whalers. A similar dwarfing occurred with Mammoths on the outer Channel Islands of California, but at an earlier period. Those animals were very likely killed by early Paleo-Native Americans, and habitat loss caused by a rising sea level that split the Santa Rosae into the outer Channel Islands.


..read more...